ON THE CORESTRICTION OF p^n -SYMBOL

ΒY

P. MAMMONE

Université de Mons, Belgique

AND

A. MERKURJEV

Leningrad State University, USSR

ABSTRACT

Let F be a field of characteristic p. Teichmüller proved that any p-algebra over F of index p^n and exponent p^e is similar to a tensor product with at most $p^n!(p^n!-1)$ factors of cyclic p-algebras over F of degree p^e . In this note we improve Teichmüller bound for two particular types of p-algebras. Let L be a finite separable extension of F. If A is a cyclic p-algebra over L of degree p^e we show that $\operatorname{Cor}_{L/F}A$, the corestriction of A, is similar to a tensor product with at most [L:F] factors of cyclic p-algebras over Fof degree p^e . Moreover we prove that [L:F] is the best possible bound. From this we deduce that if A is a cyclic p-algebra over F of degree p^n and exponent p^e then A is similar to a tensor product with at most p^{n-e} factors of cyclic p-algebras over F of degree p^e .

Introduction

Let F be a field of characteristic p. We denote by $W_n(F)$ the group of truncated Witt vectors of length n [see J, §III.4]. If $\omega \in W_n(F)$ and $a \in F^*(:= F - \{0\})$ the symbol $[\omega, a)_F$ will represent the cyclic p-algebra of degree p^n over F generated by elements $\theta_1, \theta_2, \ldots, \theta_n, u$ satisfying the rules

$$u^{p^n} = a,$$

 $\mathcal{P}\theta := \theta^p - \theta = \omega$

Received March 24, 1991 and in revised form June 11, 1991

and

$$u\theta u^{-1}=\theta+1$$

where θ is the Witt vector $(\theta_1, \theta_2, \ldots, \theta_n) \in W_n(F(\theta_1, \ldots, \theta_n))$,

$$\theta^p := (\theta_1^p, \theta_2^p, \dots, \theta_n^p),$$
$$u\theta u^{-1} := (u\theta_1 u^{-1}, \dots, u\theta_n u^{-1}),$$
$$1 := (1, 0, \dots, 0) \in W_n(F).$$

We call these algebras p^n -symbol algebras. For n = 1 we get the usual *p*-symbol algebra [see R, p. 269].

Witt proved that any cyclic *p*-algebra of degree p^n is a p^n -symbol algebra [see Wi, §6]. The class of a p^n -symbol algebra over F in Br(F), the Brauer group of F, will be called a p^n -symbol. To simplify notations we still denote by $[\omega, a)_F$ the class of the p^n -symbol algebra $[\omega, a)_F$ in Br(F). These p^n -symbols satisfy the following rules.

PROPOSITION 1: Let ω, ω' in $W_n(F)$; a_1, a_2, \ldots, a_n in F and b, b' in F^* then, in Br(F), we have

- (i) $[\omega, b)_F + [\omega', b)_F = [\omega + \omega', b)_F$,
- (ii) $[\omega, b)_F + [\omega, b')_F = [\omega, bb')_F$,
- (iii) $[(0, a_1, a_2, \ldots, a_n), b)_F = [(a_1, \ldots, a_n), b)_F,$
- (iv) $[(b, 0, ..., 0), b]_F = 0.$

Proof: See [Wi; Satz 15, 16] for (i) (ii) and (iii), and [T1] for (iv).

We can now rewrite an important theorem due to Albert with the symbol notations:

PROPOSITION 2 ([A, chap.VII, theorem 28]): Let A be a p-algebra over F split by a purely inseparable extension $F(\sqrt[p^n]{a_1}, \sqrt[p^n]{a_2}, \ldots, \sqrt[p^n]{a_s})$. Then in Br(F) we have

$$[A] = \sum_{i=1}^{s} [\omega_i, a_i)_F$$

for some $\omega_1, \omega_2, \ldots, \omega_s$ in $W_n(F)$.

In [T2, Satz 27] Teichmüller proved that any *p*-algebra of exponent p^e and index p^n is split by a purely inseparable extension K of exponent e (i.e. $K^{p^e} \subset F$) such that $[K:F] = p^{e.p^n!.(p^n!-1)}$. So by Proposition 2 we deduce that the p^e -symbols

74

pⁿ-SYMBOLS

generate $\operatorname{Br}_{p^{\bullet}}(F)$, the p^{e} -torsion subgroup of $\operatorname{Br}(F)$ (:= { $\alpha \in \operatorname{Br}(F) : p^{e}\alpha = 0$ }). And moreover, for a given *p*-algebra *A* of index p^{n} and exponent p^{e} , Teichmüller's result tells us that [*A*] is a sum, in $\operatorname{Br}(F)$, of p^{e} -symbols with at most $p^{n}!(p^{n}!-1)$ terms. This yields an upper bound of the number of terms in the decomposition of the class of any *p*-algebra of index p^{n} .

In this note we improve Teichmüller's bound for two special types of *p*-algebras. If *L* is a finite separable extension of *F*, $\omega \in W_n(L)$ and $a \in L^*$ then we show that $\operatorname{cor}_{L/F}[\omega, a)_L$ is a sum of p^n -symbols with at most [L:F] terms. Moreover, this bound is the best possible. This is a generalization of [M, §3] and [R-T]. We also prove that the class of a cyclic *p*-algebra of degree p^n and exponent p^e is a sum of $p^{e-symbols}$ with at most p^{n-e} terms.

See [R] or [D] for unexplained notation or terminology.

1. The Corestriction of pⁿ-Symbols

Let F be a field of characteristic p, F_s be a separable closure of F and L be a finite extension of F in F_s . Let $G_F = \text{Gal}(F_s/F)$ and $G_L = \text{Gal}(F_s/L)$. Recall that G_L acts on $W_n(L)$ by

$$\sigma \cdot (\theta_1, \theta_2, \ldots, \theta_n) = (\sigma(\theta_1), \sigma(\theta_2), \ldots, \sigma(\theta_n)).$$

Moreover for any $\chi \in H^1(G_F, \mathbb{Z}/p^n\mathbb{Z})$, there exists $\omega \in W_n(F)$ such that $\chi(\sigma) = \sigma(\omega) - \omega \in \mathbb{Z}/p^n\mathbb{Z}, \forall \sigma \in G_F$ (see [S] p. 163). We will write this element χ_{ω} . We denote by $\operatorname{cor}_{L/F}$ the corestriction homomorphism form $\operatorname{Br}(L)$ to $\operatorname{Br}(F)$ (see [R], §7.3]) and by cor the corestriction homomorphism of cohomological groups defined in [S, Chap. VII, §7] or [Ta, §2].

PROPOSITION 3 (Projection formula): (i) $\operatorname{cor}_{L/F}[\omega, a)_L = [\omega, Nr_{L/F}(a))_F \quad \forall \omega \in W_n(F) \text{ and } a \in L^*.$ (ii) $\operatorname{cor}_{L/F}[\omega, a)_L = [Tr_{L/F}(\omega), a)_F \quad \forall \omega \in W_n(L) \text{ and } a \in F^*.$

Proof: From the exact sequence

$$1 \to F_s^{\star} \xrightarrow{\cdot p^n} F_s^{\star} \to F_s^{\star} / F_s^{\star p^n} \to 1$$

we deduce the exact sequence

$$1 \to H^1(G_F, F_s^{\star}/F_s^{\star p^n}) \to H^2(G_F, F_s^{\star}) \xrightarrow{\cdot p^n} H^2(G_F, F_s^{\star}),$$

and so we see that

$$H^1(G_F, F_s^*/F_s^{*p^n}) \simeq \operatorname{Br}_{p^n}(F).$$

Now by the Projection formula [W; Prop. 4.3.7, p. 160] for the following cupproduct:

$$H^1(G_F, \mathbb{Z}/p^n\mathbb{Z}) \times H^0(G_F, F^{\star}_{\mathfrak{s}}) \xrightarrow{\cup} H^1(G_F, F^{\star}_{\mathfrak{s}}/F^{\star p^n}_{\mathfrak{s}})$$

and the fact that cor and $\operatorname{cor}_{L/F}$ commute with the above isomorphism we see that it suffices to check that for $a \in H^0(G_L, F_s^*) = L^*$ and $\chi_{\omega} \in H^1(G_L, \mathbb{Z}/p^n\mathbb{Z})$ we have

$$\operatorname{cor} a = Nr_{L/F}(a)$$

and

$$\operatorname{cor} \chi_{\omega} = \chi_{Tr_{L/F}\omega}.$$

We leave this to the reader.

The next lemma is crucial in the proof of our main result.

LEMMA: Let L be a finite separable extension of F of degree r. If $a \in L$ then $p_{\sqrt{a}}^{n} \in L(p_{\sqrt{b_{0}}}^{n}, p_{\sqrt{b_{1}}}^{n}, \ldots, p_{\sqrt{b_{r-1}}}^{n})$ for some $b_{0}, b_{1}, \ldots, b_{r-1}$ in F.

Proof: Since $F(a) = F(a^{p^n}) \subset L$ we have

$$a = \sum_{i=0}^{r-1} b_i a^{ip^n}$$

for some $b_0, b_1, \ldots, b_{r-1}$ in F. And so

$$\sqrt[p^n]{a} = \sum_{i=0}^{r-1} \sqrt[p^n]{b_i} \cdot a^i.$$

Here now is our main result.

THEOREM: Let L be a finite separable extension of F, [L:F] = r. Let $[\omega, a)_L$ be a p^n -symbol in Br(L), then

$$\operatorname{cor}_{L/F}[\omega, a)_L = \sum_{i=1}^r [\omega_i, a_i)_F$$

for some $\omega_1, \omega_2, \ldots, \omega_r$ in $W_n(F)$ and a_1, a_2, \ldots, a_r in F^* .

Proof: By the lemma

$$L(\sqrt[p^n]{a}) \subset L(\sqrt[p^n]{b_1})L(\sqrt[p^n]{b_2}), \ldots, L(\sqrt[p^n]{b_r})$$

for some b_1, b_2, \ldots, b_r in F. And therefore the purely inseparable extension $L(\sqrt[p^n]{b_1}, \ldots, \sqrt[p^n]{b_r})$ of L clearly splits the p^n -symbol algebra $[\omega, a)_L$. So by Proposition 2 there exists $\omega_1, \omega_2, \ldots, \omega_r$ in $W_n(L)$ such that

$$[\omega,a)_L = \sum_{i=1}^r [\omega_i,b_i)_L.$$

And finally by Proposition 3(ii) in Br(F) we have

$$\operatorname{cor}_{L/F}[\omega,a]_L = \sum_{i=1}^{r} [Tr_{L/F}\omega_i,b_i)_F.$$

The following comment has been pointed out by the referee. If F is of transcendence degree d over a perfect field, then for any finitely generated subfield E of F, $E^{1/p}$ is generated over E by d+1 elements. If L is a finite separable extension of F of degree r, then the corestriction of any p^n -symbol from L to Fis a sum of at most $m p^n$ -symbols in F, where $m = \min(r, d+1)$.

2. An Example

The theorem above shows that if L is a finite separable extension of F of degree r then any element of $\operatorname{Br}_{p^n}(F)$ which is the corestriction of a p^n -symbol in $\operatorname{Br}_{p^n}(L)$ is a sum of p^n -symbols with at most r terms.

The following example proves that this bound is the best possible. Let

$$u_1, v_1, \ldots, u_r, v_r$$

be 2r independent variables over a field k of characteristic p. Let

$$L := k(u_1, v_1, \ldots, u_r, v_r)$$

and σ be the automorphism of L defined by

$$\sigma_{|k} = 1_k,$$

$$\sigma(u_i) = u_{i+1} \text{ for } 1 \le i < r \text{ and } \sigma(u_r) = u_1,$$

$$\sigma(v_i) = v_{i+1} \text{ for } 1 \le i < r \text{ and } \sigma(v_r) = v_1.$$

Let $F := \text{Fix } \sigma$. In [M, §4] it is proved that the corestriction of the *p*-symbol $[u_1, v_1)_L$ (i.e. $\text{cor}_{L/F}[u_1, v_1)_L$) is not a sum of less than r = [L : F] *p*-symbols in Br(F). Similarly we have

PROPOSITION 4: Let $\omega = (u_1, 0, ..., 0) \in W_n(L)$, then $\operatorname{cor}_{L/F}[\omega, v_1)_L$ is not a sum of p^n -symbols with less than r terms.

Proof: Recall first that for $\alpha = (\alpha_1, \alpha_2, ..., \alpha_n) \in W_n(L)$ we have $p.\alpha = (0, \alpha_1^p, ..., \alpha_{n-1}^p)$. So using the rules in Proposition 1 we see that in Br(F)

$$p^{n-1}.\operatorname{cor}_{L/F}[\omega, v_1) = \operatorname{cor}_{L/F}[p^{n-1}.\omega, v_1)_L$$
$$= \operatorname{cor}_{L/F}[u_1^{p^{n-1}}, v_1)_L$$
$$= \operatorname{cor}_{L/F}[u_1, v_1)_L.$$

Since for any p^n -symbol α clearly $p^{n-1} \cdot \alpha$ is a p-symbol, we conclude by the remark above.

3. On the Decomposition of Cyclic *p*-Algebras

The following proposition improves Teichmüller's bound for cyclic p-algebras.

PROPOSITION 5: Let A be a cyclic p-algebra of degree p^n and exponent p^e . Then [A] is a sum of p^e -symbols in Br(F) with at most p^{n-e} terms.

Proof: Let K be a maximal subfield of A cyclic over F, and L an extension of F in K such that $[K:L] = p^e$. Then by [Ti, Lemma] the image of the corestriction homomorphism

$$\operatorname{cor}_{L/F} : \operatorname{Br}(K/L) \to \operatorname{Br}(K/F)$$

is the p^e-torsion subgroup $\operatorname{Br}_{p^e}(K/F)$. Since $[A] \in \operatorname{Br}_{p^e}(K/F)$, then

$$[A] = \operatorname{cor}_{L/F}[\omega, a)_L$$

for some p^e -symbol in Br(L). The theorem gives the thesis.

Observe that for e = n the proposition gives the expected bound (i.e. 1).

4. Remark

Let F(a) and F(c) be finite separable extensions of F. In [M] it is proved that the corestriction homomorphism satisfies the following reciprocity law:

$$\operatorname{cor}_{F(a)/F}[a,f(a))_{F(a)} = \operatorname{cor}_{F(c)/F}[c,p(c))_{F(c)}$$

where f(x) = Irr(c, F) and p(x) = Irr(a, F).

pⁿ-SYMBOLS

It would be interesting to know how this formula generalizes to p^n -symbols. It is perhaps useful to observe that in general

$$\operatorname{cor}_{F(a)/F}[(a,0,\ldots,0),f(a))_{F(a)}\neq \operatorname{cor}_{F(c)/F}[(c,0,\ldots,0),p(c))_{F(c)}.$$

Indeed, let $M = \mathbf{F}_2(X_1, X_2, X_3, Y_1, Y_2)$, the rational function field in five variables over \mathbf{F}_2 . Let σ be the automorphism of M which permutes cyclically X_1, X_2, X_3 and fixes Y_1, Y_2 and similarly let τ be the automorphism of M which permutes cyclically Y_1, Y_2 and fixes X_1, X_2, X_3 . Set $F := \text{Fix } \langle \sigma, \tau \rangle, f(x) = \text{Irr } (Y_1, F)$ and $p(x) = \text{Irr } (X_1, F)$. Then using the rules of Proposition 1 it can be shown that

$$\operatorname{cor}_{F(x_1)/F}[(X_1,0),f(X_1))_{F(X_1)} - \operatorname{cor}_{F(Y_1)/F}[(Y_1,0),p(Y_1))_{F(Y_1)} \\ = [(X_1 + X_2 + X_3)(Y_1 + Y_2),Y_1 + Y_2)_F.$$

Since the quaternion algebra $[(X_1 + X_2 + X_3)(Y_1 + Y_2), (Y_1 + Y_2))_F$ is a division algebra (this is clearly a division algebra over M) this proves our observation.

References

- [A] A.A. Albert, Structure of Algebras, A.M.S. Coll. Publ. Vol. 24, A.M.S., New York, 1939.
- [J] N. Jacobson, Lectures in Abstract Algebra III, Van Nostrand, Princeton, 1964.
- [D] P.K. Draxl, Skew fields, London Math. Soc. Lecture Notes Series, Vol. 81, 1983.
- [M] P. Mammone, Sur la corestriction des p-symboles, Comm. in Alg. 14 (1986), 517-529.
- [R] L.H. Rowen, Ring Theory II, Academic Press, New York, 1988.
- [R-T] S. Rosset and J. Tate, A reciprocity law for K₂-traces, Comm. Math. Helv. 58 (1983), 38-47.
 - [S] J.P. Serre, Corps locaux, Hermann, Paris, 1962.
 - [T1] O. Teichmüller, Zerfallende zyklische p-Algebren, J. Rein Angew. Math. 176 (1937), 157-160.
 - [T2] O. Teichmüller, p-Algebren, Deutsche Math. 1 (1936), 362-388.
 - [Ta] J. Tate, Relations between K_2 and Galois cohomology, Invent. Math. **36** (1976), 257-274.
 - [Ti] J.P. Tignol, Cyclic Algebras of small exponent, Proc. Am. Math. Soc. 89 (1983), 587-588.
 - [W] J.E. Weiss, Cohomology of Groups, Academic Press, New York, 1969.
 - [Wi] E. Witt, Zyklische Körper und Algebren der charakteristik p vom Grad pⁿ, J. Reine Angew. Math. 176 (1937), 126-140.